MATH LAB \rightarrow numbers and operations \rightarrow lesson 02

STUDENT

INSTRUCTOR .

GROUP

DATE.

Math Lab Lesson #2 Classwork:

Expressions, Equations, and Identities

★ <u>Video#1: A Common Factoring "Mistake"</u>

 \star Example: a) Factor the difference 25 – 60 by finding a common factor

b) Factor 5x + 60

c) Factor **32** – **8***a*

1. Factor:				
4x - 24	4 <i>a</i> + 36	36 – 9 <i>c</i>		

2. a) Find the mistake in the work below:

$$7a - 56 = 7(a - 9)$$

b) Fix the mistake by factoring 7a - 56 correctly.

3. a) Write an expression that could be factored as 6(b-2)

b) Write an expression that could be factored as 6(2 - b)

c) Write an expression that could be factored as -6(2 - b)

d) Are your answers to a) and c) the same? Hmm...why would that be?

★ <u>Video#2: Solving Equations Two Ways: Inverse Operations and Structure</u>

SOLUTION #1:	SOLUTION #2:
USING INVERSE OPERATIONS	USING STRUCTURE

Example: a) Solve the equation 4x - 3 = 25

b) Solve for k: 4k + 5 = 17 + 2k

c) Let P = 4k + 5 and Q = 17 + 2k. If P = Q, then what is the value of k?

2. Solve for *a*: 4a + 3 = 3a - 7

3. Solve for *b*: -5b + 20 = 3b - 4

4. Let A = 4m - 1 and B = 17 + 2m. If A = B, then what is the value of m?

5. Use structure to solve the following equations (try not to use inverse operations!)

$3\lambda - 21 \qquad \qquad 0 m - 40 \qquad \qquad 2u + 1 - 7$	

© Sponsors for Educational Opportunity 5

★ <u>Video#3: Equations and Identities</u>

Example: When is an equations always true? When is it sometimes true? When is it never true?

1. The statement 12 - 2x = 2x is

- A) Always true
- **B)** Sometimes true
- **C)** Never true
- **D)** Not enough information
- 2. The statement 12 6b = 6(2 b) is
- A) Always true
- **B)** Sometimes true
- **C)** Never true
- **D)** Not enough information

1. The statement 15 - x = 2x is

- A) Always true
- B) Sometimes true
- C) Never true
- **D)** Not enough information

2. The statement 5x + 15 = 5(x + 3) is

- A) Always true
- B) Sometimes true
- **C)** Never true
- D) Not enough information

3. The statement x + 2 = x + 3 is

- A) Always true
- B) Sometimes true
- **C)** Never true
- **D)** Not enough information
- 4. The statement 2x = 3x is
- A) Always true
- **B)** Sometimes true
- **C)** Never true
- **D)** Not enough information

(HINT: before you answer this one, try to "solve for x")

★ <u>Video#4: Equations in Two Variables</u>

Example: 1. Consider the equation 3x = 6y

a) Solve the equation for <i>x</i> :	b) Solve the equation for <i>y</i> :
c) What is the value of $\frac{x}{y}$?	d) What is the value of $\frac{y}{r}$?

2. The statement 4(x + y) = 4x + 4y is

A) Always true

B) Sometimes true

C) Never true

D) Not enough information

- 3. The statement 4(x + y) = 4x + y is
- A) Always true
- **B)** Sometimes true
- **C)** Never true
- **D)** Not enough information

1. Consider the equation 10a = 2b

a) Salva the equation for a	b) Salve the equation for b.
a) solve the equation for a :	b) Solve the equation for D .
c) What is the value of $\frac{a}{2}$?	d) What is the value of $\frac{b}{-}$?
b)	a a

- 2. The statement 7(m + p) = 7m + p is
- A) Always true
- B) Sometimes true
- **C)** Never true
- **D)** Not enough information
- 3. The statement -2(x y) = -2x + 2y is
- A) Always true
- B) Sometimes true
- **C)** Never true
- D) Not enough information

4. Consider the equation 10(a-5) = 10b - 50. What must be true of the ratio $\frac{a}{b}$ in order for this equation to be an identity? (Assume that $a \neq 0$ and $\neq 0$)

MATH LAB BOSS LEVEL

1. Consider the equation 10(a-5) = 2b - 50. What must be true of the ratio $\frac{a}{b}$ in order for this equation to be an identity? (Assume that $a \neq 0$ and $\neq 0$)

2. The statement 4 - m = 4m is

A) Always true

B) Sometimes true

- **C)** Never true
- D) Not enough information

3. The statement 3(a - b) = 3a - b is

- A) Always true
- B) Sometimes true
- **C)** Never true
- **D)** Not enough information

4. Let M = 5a - 3 and N = 7 + 3a. If M = N, then what is the value of a?